6.2 Notes - Confidence Intervals for the Mean

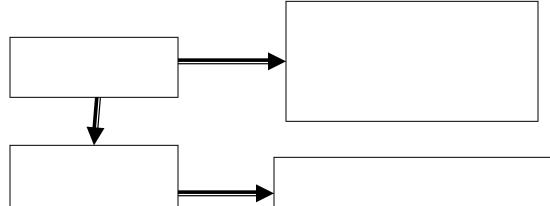
(Small Samples)

I. <u>The t – Distribution</u>

In many real-life situations, the ______ is unknown. If the random

variable is normally distributed (or approximately normal) the sampling distribution for \overline{x} is a

	Formula for <i>t</i> - distribution	Critical values of <i>t</i> are denoted
	Properties of the <i>t</i> -distribution: 1.	
	2. degrees of freedom (df) -	
	3.	
	4.	
	5.	
E	xample 1 – use the table:	
	a. Find the critical value t_c , for a 90% confidence	when the sample size is 22.


- b. Find the critical value, t_c , for a 95% confidence when the sample size is 15.
- c. Find the critical value, t_c , for an 99% confidence when the sample size is 28.

II. Confidence Intervals and *t*-Distributions

Example 2:

You randomly select 16 restaurants and measure the temperature of the coffee sold at each. The sample mean temperature is 162°F with a sample standard deviation of 10°F. Find the 90% confidence interval for the mean temperature.

How do you know when to use a normal distribution or a t – distribution to construct a confidence interval?

6.2 Notes – Confidence Intervals for the Mean

(Small Samples)

Example 3:

You randomly select 18 adult male athletes and measure the resting heart rate of each. The sample mean heart rate is 64 beats per minutes with a sample standard deviation of 2.5 beats per minute. Assuming heart rates are normally distributed, should you use the normal distribution or the t-distribution, or neither to construct a 90% confidence interval for the mean heart rate? Find the interval, if possible.

Assignment: new: pgs 330 – 331/1, 2, 13, 15, 17, 20, 21 old: pgs 271 – 273/ 1, 2, 11, 13