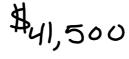
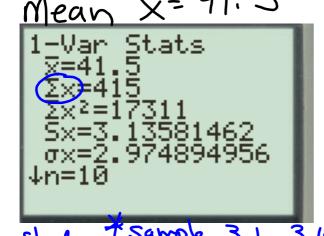
I. Range





Starting Salary for Corporation A

Salary (in thousands \$)	Deviation
41 41,000	
38	
39	
45	
47	
41	
44	
41	
37	
42	
$\sum x \rightarrow 4/5$	$\sum (x-\mu) =$

Top.

a. Variance

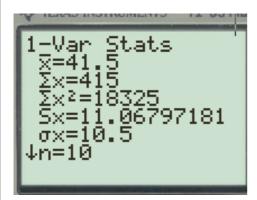
b. Standard Deviation

In words:

- 1. Find the mean of the population data set.
- 2. Find the deviation of each entry.
- 3. Square each deviation.
- 4. Add to get the sum of squares.
- 5. Divide by n to get the *population variance*.
- 6. Find the square root of the variance to get the *population standard deviation*.

In symbols:

Sala	ry 40	23	41	50	49	32	41	29	52	58



IV. Sample

a. Variance

b. Standard Deviation

In words: In symbols:

- 1. Find the mean of the sample data set.
- 2. Find the deviation of each entry.
- 3. Square each deviation.
- 4. Add to get the sum of squares.
- 5. Divide by n to get the sample variance.
- 6. Find the square root of the variance to get the *sample standard deviation*.

Starting Salaries for a sample of Corporation B (1000s of dollars)

	•					(-,			
Salary	40	23	41	50	49	32	41	29	52	58	1

V. Interpreting Standard Deviation

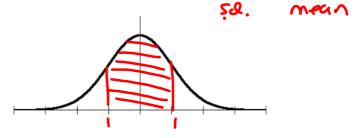
Analyze the graphs on top of page 73.

The more the entries are spread out, the ______ the standard deviation.

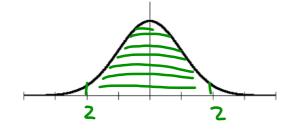
Empirical Rule (or 68-95-99.7 Rule)

For data with a (symmetrical) bell-shaped distribution, the standard deviation has the following characteristics.

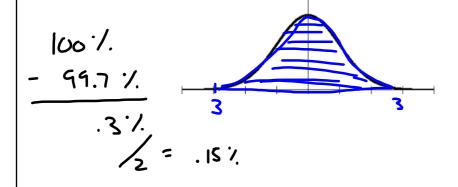
1. About 68% of the data lies within 53% of the 4%.



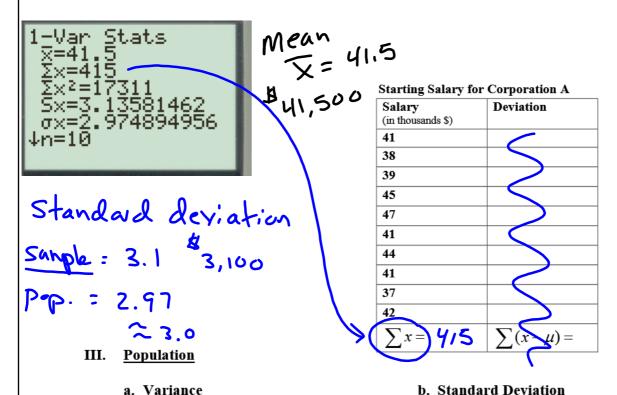
2. About 95 /of the data lies within $\frac{2}{\sigma}$ of the μ .



3. About $\frac{99.7}{6}$ % the data lies within $\frac{3}{3}$ σ of the μ .



I. Range



b. Standard Deviation

In words:

1. Find the mean of the population data set.

2. Find the deviation of each entry.

- 3. Square each deviation.
- 4. Add to get the sum of squares.
- 5. Divide by n to get the population variance.
- 6. Find the square root of the variance to get the population standard deviation.

In symbols:

IV. Sample

a. Variance

b. Standard Deviation

In words: In symbols:

- 1. Find the mean of the sample data set.
- 2. Find the deviation of each entry.
- 3. Square each deviation.
- 4. Add to get the sum of squares.
- 5. Divide by n to get the sample variance.
- 6. Find the square root of the variance to get the *sample standard deviation*.

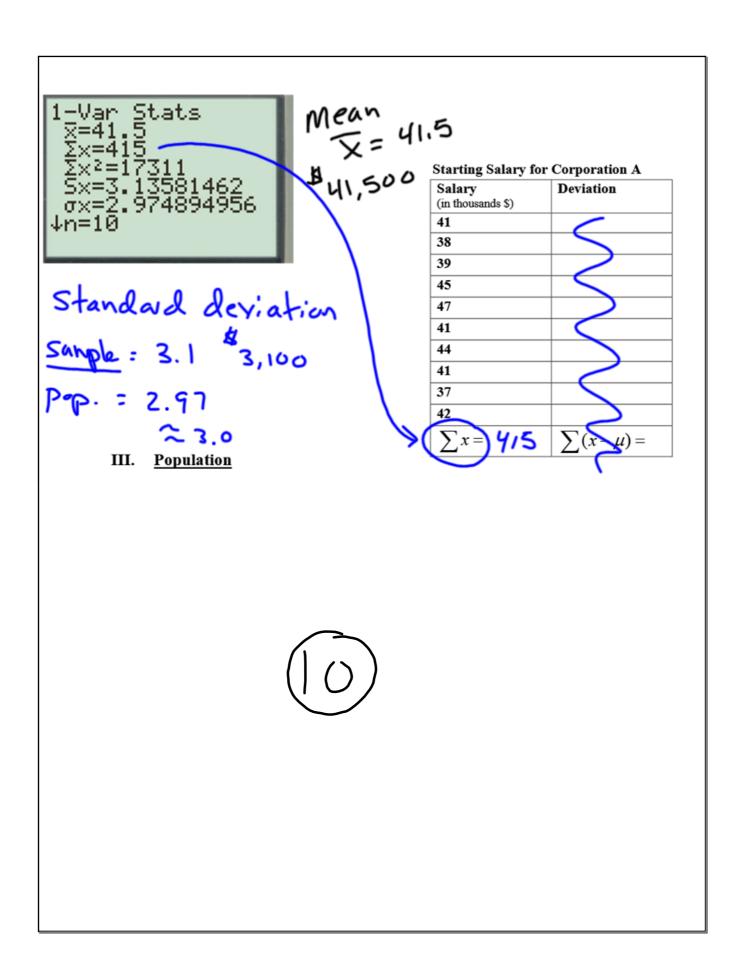
Starting Salaries for a sample of Corporation B (1000s of dollars)

	•					(-,			
Salary	40	23	41	50	49	32	41	29	52	58]

V. Interpreting Standard Deviation

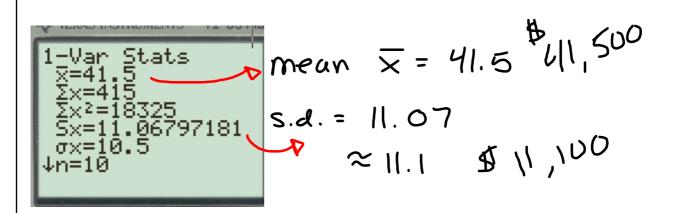
Analyze the graphs on top of page 73.

The more the entries are spread out, the ______ the standard deviation.



Starting Salaries for a sample of Corporation B (1000s of dollars)

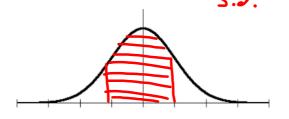
	5 ~					(-,		
Salary	40	23	41	50	49	32	41	29	52	58



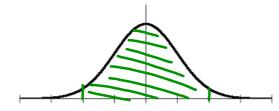
Empirical Rule (or 68-95-99.7 Rule)

For data with a (symmetrical) bell-shaped distribution, the standard deviation has the following characteristics.

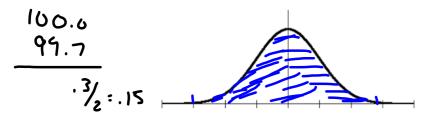
1. About $\frac{68}{68}$ of the data lies within $\frac{1}{500}$ of the μ .



2. About $\frac{95}{9}$ of the data lies within $\frac{2}{9}$ of the μ .

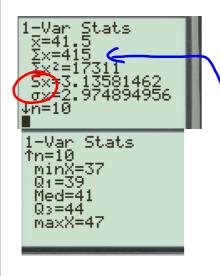


3. About $\frac{9.7}{1.0}$ of the data lies within $\frac{3}{1.0}$ σ of the μ .



I. Range

II. Deviation



Starting Salary for Corporation A

Starting Salary 101	Corporation A
Salary	Deviation
(in thousands \$)	
41	415-41
38	415 - 38
39	415 - 38
45	•
47	
41	
44	
41	
37	
42	
$\sum x = 415$	$\sum (x-\mu)=$

III. Population

a. Variance
$$V = (3.14)^2$$

b. Standard Deviation

3.14

In words:

- 1. Find the mean of the population data set.
- 2. Find the deviation of each entry.
- 3. Square each deviation.
- 4. Add to get the sum of squares.
- 5. Divide by n to get the *population variance*.
- 6. Find the square root of the variance to get the *population standard deviation*.

In symbols:

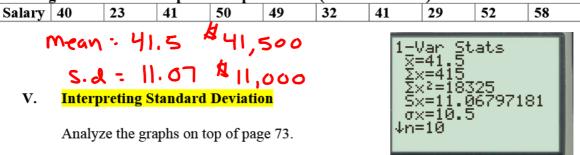
- IV. Sample
 - a. Variance

b. Standard Deviation

In words: In symbols:

- 1. Find the mean of the sample data set.
- 2. Find the deviation of each entry.
- 3. Square each deviation.
- 4. Add to get the sum of squares.
- 5. Divide by n to get the sample variance.
- 6. Find the square root of the variance to get the *sample standard deviation*.

Starting Salaries for a sample of Corporation B (1000s of dollars)

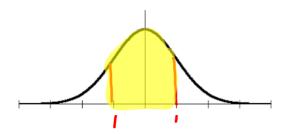


The more the entries are spread out, the ______ the standard deviation.

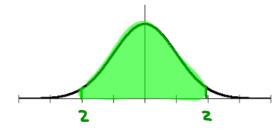
Empirical Rule (or 68-95-99.7 Rule)

For data with a (symmetrical) bell-shaped distribution, the standard deviation has the following characteristics.

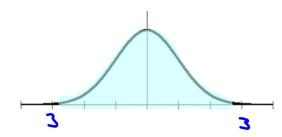
1. About $\frac{60\%}{60\%}$ of the data lies within $\frac{1}{10\%}$ of the μ .



2. About 95% of the data lies within 2σ of the μ .

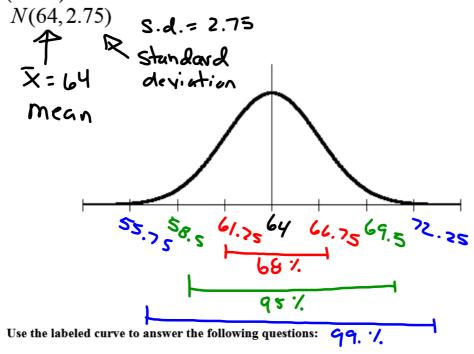


3. About $\frac{99\%}{100}$ of the data lies within $\frac{3}{100}$ of the μ .

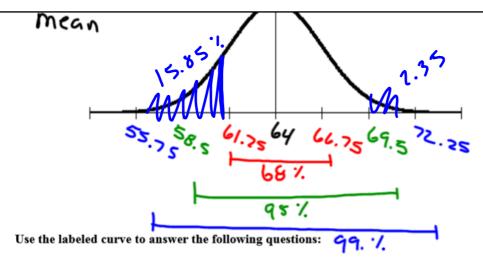


Example:

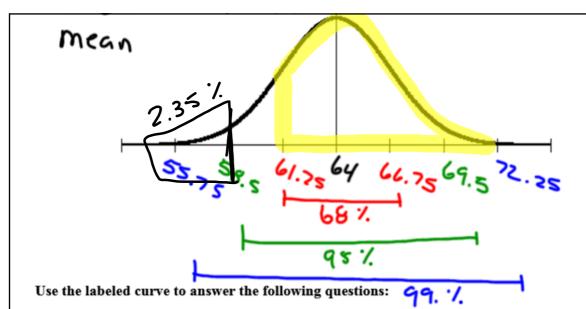
Suppose you are given that the mean height of American women (ages 20-29) was 64 inches with a standard deviation of 2.75 inches. Draw and label the bell-shaped (normal) distribution curve.



- 1. Estimate the percent of the women whose height are between 61.25 inches and 69.5 inches.
- 2. Estimate the percent of the women whose height are above 61.25 inches.
- 3. Estimate the percent of the women whose height are below 58.5 inches.
- 4. Estimate the percent of the women whose height is either below 61.25 inches OR above 69.5 inches.



- 1. Estimate the percent of the women whose height are between 61.25 inches and 69.5 inches.
- 2. Estimate the percent of the women whose height are above 61.25 inches.
- 3. Estimate the percent of the women whose height are below 58.5 inches.
- 4. Estimate the percent of the women whose height is either below 61.25 inches OR above 69.5 inches . 3



1. Estimate the percent of the women whose height are between 61.25 inches and 69.5 inches. 34 + 34 + 13.5 = 81.5.

- 2. Estimate the percent of the women whose height are above 61.25 inches.
- 3. Estimate the percent of the women whose height are below 58.5 inches.

