

Apr 8-9:13 PM

Apr 8-9:12 PM

Geometric Sequences MULTIP

Examples: $\frac{10}{5} = 2$ $\frac{20}{10} = 2$ $\frac{40}{20} = 2$

Geometric Sequence		Common Ratio, r
5, 10, 20, 40,	r = 2	multiply each term by 2 to arrive at the next term ordivide a_2 by a_1 to find the common ratio, 2.
-11, 22, -44, 88, [= -2	r = -2	multiply each term by -2 to arrive at the next term .ordivide a ₂ by a ₁ to find the common ratio, -2.
$4, \frac{8}{3}, \frac{16}{9}, \frac{32}{27}, \frac{64}{81}, \dots$	$r = \frac{2}{3}$	multiply each term by 2/3 to arrive at the next term ordivide a2 by a1 to find the common ratio, 2/3.

Apr 8-9:13 PM

$$\frac{8}{4,\frac{8}{3},\frac{16}{9},\frac{32}{27},\frac{64}{81}}$$

$$\frac{9}{3} \cdot \frac{1}{4} = \frac{8}{12} \cdot \frac{21}{3}$$

$$\frac{16}{4} \cdot \frac{3}{8} = \frac{48}{72} \cdot \frac{21}{3}$$

$$\frac{32}{77} \cdot \frac{32}{16} \cdot \frac{32}{77} \cdot \frac{9}{16} = \frac{288}{932} \cdot \frac{27}{3}$$

Formulas used with geometric sequences and geometric series:

geometric sequences

To find any term

of a geometric sequence:

$$a_n = a_1 \bullet r^{n-1}$$

where a_1 is the first term of the sequence, r is the common ratio, n is the number of the term to find.

Note: a_1 is often simply referred to as a_1 .

geometric series:

To find the sum of a certain number of terms of a geometric sequence:

$$S_n = \frac{a_1(1 - r^n)}{1 - r}$$

where S_n is the sum of n terms (nth partial sum), a_1 is the first term, r is the common ration.

Apr 8-9:14 PM

To find the sum of a certain number of terms of a geometric sequence:

$$S_n = \frac{a_1(1-r^n)}{1-r}$$

where S_n is the sum of n terms (n^{th} partial sum), a_1 is the first term, r is the common ration.

$$S_{90}^{2} \cdot \frac{01(1-2^{30})}{1-2}$$
 10737418.23

Question	Answer
1. Find the common ratio for the sequence $6, -3, \frac{3}{2}, -\frac{3}{4}, \dots$	1. The common ratio, r , can be found by dividing the second term by the first term, which in this problem yields $-1/2$. Checking shows that multiplying each entry by $-1/2$ yields the next entry.
2. Find the common ratio for the sequence given by the formula $a_n = 5(3)^{n-1}$	2. The formula indicates that 3 is the common ratio by its position in the formula. A listing of the terms will also show what is happening in the sequence (start with $n = 1$). 5, 15, 45, 135, The list also shows the common ratio to be 3.
3. Find the 7 th term of the sequence 2, 6, 18, 54,	3. $n = 7$; $a_1 = 2$, $r = 3$ $a_n = a_1 \cdot r^{n-1}$ $a_7 = 2 \cdot 3^{7-1} = 1458$ The seventh term is 1458.
4. Find the 11^{th} term of the sequence $1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \dots$	4. $n = 11$; $a_1 = 1, r = -1/2$ $a_{11} = 1 \cdot \left(-\frac{1}{2}\right)^{11-1} = \frac{1}{1024}$

Apr 8-9:17 PM

- 1. Find the common ratio for the sequence $\frac{-\frac{3}{4}}{\frac{3}{2}} = \frac{3}{4} = \frac{2}{3} = \frac{6}{3}, -\frac{3}{2}, -\frac{3}{4}, \dots = \frac{-3}{6}, -\frac{1}{2} = \frac{3}{2} = \frac{3}{$
- 2. Find the common ratio for the sequence given

Apr 27-12:47 PM

4. Find the 11th term of the sequence

$$1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, ...$$

$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{1}{1} \left(-\frac{1}{2}\right)^{n-1} \frac{1}{1(-\frac{1}{2})^{n-1}} \frac{1}{1(-\frac{1}{2})^{n-1}}$$

Sequence => pattern

Serice => add the pattern

$$01(2)^{n-1}$$
 $01(2)^{25}$
 $01(2)^{25}$
 $01(2)^{25}$
 $01(2)^{25}$

Serice of the 1^{5} 4 terms

 $01(2)^{25}$

Apr 27-12:57 PM

5. Find ag for the sequence	5. $n = 8$; $a_1 = 0.5$, $r = 7$
0.5, 3.5, 24.5, 171.5,	
	$a_n = a_1 \cdot r^{n-1}$
	$a_8 = 0.5 \cdot 7^{8-1} = 411,771.5$
6. Evaluate using a formula:	6. Examine the summation
$\sum_{k=1}^{5} 3^k$	$\sum_{k=1}^{5} 3^k = 3^1 + 3^2 + 3^3 + 3^4 + 3^5$
	This is a geometric series with a common ratio of
	$n=5$; $a_1=3$, $r=3$
	$S_5 = \frac{3(1-3^5)}{1-3} = \frac{-726}{-2} = 363$
7. Find the sum of the first 8 terms of the	7. The word "sum" indicates a need for the sum
sequence	formula.
-5, 15, -45, 135,	$n = 8$; $a_1 = -5$, $r = -3$
	$S_8 = \frac{-5(1 - (-3)^8)}{1 - (-3)}$
	$S_8 = \frac{-5(1-6561)}{4} = \frac{32800}{4} = 8200$

Apr 8-9:18 PM

8. The third term of a geometric sequence is 3	8. Think of the sequence as "starting with" 3, until you
and the sixth term is 1/9. Find the first term.	find the common ratio.
9. A ball is dropped from a height of 8 feet. The ball bounces to 80% of its previous height with each bounce. How high (to the nearest tenth of a foot) does the ball bounce on the fifth bounce?	6.4, 5.12,,,

Apr 8-9:19 PM