6.2 Notes - Confidence Intervals for the Mean

(Small Samples)

I. <u>The *t* – Distribution</u>

In many real-life situations, the ______ is unknown. If the random variable is normally distributed (or approximately normal) the sampling distribution for \overline{x} is a

Formu Critica	la for <i>t</i> - distribution:
	Properties of the <i>t</i> -distribution: 1.
	2. degrees of freedom (df) -
	3.
	4.
	5.

Example 1 - use the table:

- a. Find the critical value t_c , for a 90% confidence when the sample size is 22.
- b. Find the critical value, t_c , for a 95% confidence when the sample size is 15.
- c. Find the critical value, t_c , for an 99% confidence when the sample size is 28.

II. Confidence Intervals and *t*-Distributions

Example 2:

You randomly select 16 restaurants and measure the temperature of the coffee sold at each. The sample mean temperature is 162°F with a sample standard deviation of 10°F. Find the 90% confidence interval for the mean temperature.

6.2 Notes - Confidence Intervals for the Mean

(Small Samples)

How do you know when to use a normal distribution or a t – distribution to construct a confidence interval?

Example 3:

You randomly select 18 adult male athletes and measure the resting heart rate of each. The sample mean heart rate is 64 beats per minutes with a sample standard deviation of 2.5 beats per minute. Assuming heart rates are normally distributed, should you use the normal distribution or the t-distribution, or neither to construct a 90% confidence interval for the mean heart rate? Find the interval, if possible.