Notes 4.1 Probability Distribution Part A

I. Random Variables

Example 1:

Decide whether the random variable, x, is discrete or continuous. Explain your reasoning.

- a. *x* represents the number of stocks in the Dow Jones Industrial Average that have share prices increases on a given day
- b. *x* represents the volume of bottled water in a 32-ounce container
- c. x represents the length of time it takes to complete a test
- d. x represents the number of home runs hit during a Braves game

II. Discrete Probability Distributions -

There are two conditions: 1.

2.

Because probabilities represent relative frequencies, a discrete probability distribution can be graphed with a _____.

Notes 4.1 Probability Distribution Part A

Example 2:

A company tracks the number of sales new employees make each day during a 100-day probationary period. The results for one new employee are shown. Construct and graph a probability distribution.

Sales per Day, x	Number of Days, f
0	16
1	19
2	15
3	21
4	9
5	10
6	8
7	2

х	0	1	2	3	4	5	6
f(x)							

Î		

<u>Example 3:</u>

Determine whether each distribution is a probability distribution.

a.						D.					
	Х	1	2	3	4		x	5	6	7	8
	p(x)	0.09	0.36	0.49	0.06		p(x)	1	5	1	3
								16	$\frac{-}{8}$	$\overline{4}$	16
c.						d.					
	X	9	10	11	12		X	1	2	3	4
	p(x)	0.28	0.21	0.43	0.15		p(x)	1	1	5	-1
-								$\overline{2}$	4	4	
							•	•	•	÷	

Assignment:	New textbook:	pgs 201 – 203/ 9 – ⁻	<mark>10, 11 – 12, 13 -</mark>	- <mark>16, 17 – 20</mark> ,	23 – 24, 25 – 28
	Old textbook:	pgs 159 – 160/ 7 –	3, 9 –	12,	15 – 16