Exponential Functions

$f(x)=3^{x}$
$f(x)=.6^{x}$
$f(x)=2 \cdot\left(\frac{1}{4}\right)^{x}$
$f(x)=\left(\frac{13}{2}\right)^{x}$

When $b>1$, the function represents exponential growth.
When $0<b<1$, the functions represents exponential decay.

Graph each of the above exponential equations and identify the y-intercept.

1. The population of the United States was $248,718,301$ in 1990 and was predicted to grow at a rate of about 8% per decade.
a. Write the expression for the population n decades after 1990.
b. Predict the population, to the nearest hundred thousand, for the year 2020.
2. A certain medication is eliminated from the bloodstream at a rate of 12% per hour. The medication reaches a peak level in the bloodstream at 40 milligrams.
a. Write the expression for the amount of medication in the blood after n hours.
b. Predict the amount, to the nearest tenth of a milligram, the amount of medication remaining 8 hours after the peak level.
3. A virus contains bacteria that grows at a rate of 2% per year. Presently the virus contains 6000 bacteria. Find the number of bacteria 6 years from now.

Logarithmic Functions

Logarithms are used to find unknown exponents in exponential models.
$4^{3}=64 \quad \longrightarrow \quad \log _{4} 64=3$
exponential form
logarithmic form

Write each equation in logarithmic form.

1. $5^{4}=625$
2. $\quad 6^{-2}=\frac{1}{36}$
3. $\left(\frac{1}{7}\right)^{-3}=343$
4. $3375^{\frac{1}{3}}=15$

Write each equation in exponential form.

1. $\log _{12} 144=2$
2. $\log _{3600} 60=\frac{1}{2}$
3. $\log _{\frac{1}{5}} 625=-4$
4. $\log _{11} \frac{1}{1331}=-3$

Evaluate each expression.

1. $\log _{3} 81$
2. $\log _{\frac{1}{2}} 8$
3. $\log _{16} 4$

Find the value of v in each equation.

1. $5=\log _{2} v$
2. $v=\log _{20} 400$
3. $4=\log _{v} 10,000$
4. $\frac{1}{2}=\log _{25} v$

Properties of Logarithmic Functions

Product Property $\log _{7}(x y)=\log _{7} x+\log _{7} y$

Quotient Property $\log _{5}\left(\frac{m}{n}\right)=\log _{5} m-\log _{5} n$

Power Property $\quad \log _{3} w^{6}=6 \log _{3} w$

Write each expression as a single logarithm. Then simplify if possible.

1. $\log _{9} 12+\log _{9} 3$
2. $\log _{w} m+\log _{w} 2 n-\log _{w} p$
3. $\log _{3} 4-\log _{3} 18$
4. $3 \log _{n} 4-2 \log _{n} 6$
5. $\log _{11} m+2 \log _{11} n-5 \log _{11} m n$

Change-of-Base Formula
To change from base b to base $a: \quad \log _{b} x=\frac{\log _{a} x}{\log _{a} b}$

Write $\log _{9} 27$ as a base 3 expression.

Write $\log _{8} 32$ as a base 2 expression.

Compound Interest Formula

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ total amount of the investment
$P=$ principal
$r=$ annual interest rate
$n=$ \# of times interest in compounded per year annually quarterly monthly daily
$t=$ time in years

Examples:

1. Find the final amount of a $\$ 500$ investment after 8 years at 7% interest compounded
a. monthly
b. daily
2. Find the final amount of a $\$ 2000$ investment after 18 months at 9.3% interest compounded
a. quarterly
b. annually
