- Asymptote:
- Common logarithm:
- Continuously compounded interest
- Compounded interest:
- Exponential functions:
- Logarithmic functions:
- Logarithm:
- Natural exponential:
- Natural logarithm:

Unit 4 Vocabulary:

- Asymptote: An asymptote is a line or curve that approaches a given curve arbitrarily closely. A graph never crosses a vertical asymptote, but it may cross a horizontal or oblique asymptote.
- **Common logarithm:** A logarithm with a base of 10. A common logarithm is the exponent, *a*, such that $10^{a} = b$. The common logarithm of x is written log x. For example, log 100 = 2 because $10^{2} = 100$.
- **Continuously compounded interest:** Interest that is, theoretically, computed and added to the balance of an account each instant. The formula is $A = Pe^{rt}$, where A is the ending amount, P is the principal or initial amount, r is the annual interest rate, and t is the time in years.
- **Compounded interest:** A method of computing the interest, after a specified time, and adding the interest to the balance of the account. Interest can be computed as little as once a^{nt} ear to as many times as one would like. The formula is $A = P(1 + \frac{r}{n})$ where A is the ending amount, P is the principal or initial amount, r is the annual interest rate, n is the number of times compounded per year, and t is the number of years.
- **Exponential functions:** A function of the form $y=a^x$ where a > 0 and $a \neq 1$.
- Logarithmic functions: A function of the form $y=\log_b x$ with $b \neq 1$ and b and x both positive. A logarithmic function is the inverse of an exponential function. The inverse of $y = b^x$ is $y=\log_b x$.
- Logarithm: The logarithm base b of a number x, $\log_b x$, is the exponent to which b must be raised to equal x.
- Natural exponential: Exponential expressions or functions with a base of e; i.e., $y = e^{x}$.
- Natural logarithm: A logarithm with a base of e. *lnb* is the exponent, a, such that $e^{a} = b$. The natural logarithm of x is written *ln* x and represents loge^x. For example, *ln* 8 = 2.0794415... because $e^{2.0794415...} = 8$.