- Asymptote:
- Common logarithm:
- Continuously compounded interest
- Compounded interest:
- Exponential functions:
- Logarithmic functions:
- Logarithm:
- Natural exponential:
- Natural logarithm:

Unit 4 Vocabulary:

- Asymptote: An asymptote is a line or curve that approaches a given curve arbitrarily closely. A graph never crosses a vertical asymptote, but it may cross a horizontal or oblique asymptote.
- Common logarithm: A logarithm with a base of 10 . A common logarithm is the exponent, a, such that $10^{a}=$ b. The common logarithm of x is written $\log x$. For example, $\log 100=2$ because $10^{2}=100$.
- Continuously compounded interest: Interest that is, theoretically, computed and added to the balance of an account each instant. The formula is $A=P e^{t t}$, where A is the ending amount, P is the principal or initial amount, r is the annual interest rate, and t is the time in years.
- Compounded interest: A method of computing the interest, after a specified time, and adding the interest to the balance of the account. Interest can be computed as little as once $a^{\text {nt }}$, ear to as many times as one would like. The formula is $A=P\left(1+\frac{r}{n}\right)$ where A is the ending amount, P is the principal or initial amount, r is the annual interest rate, n is the number of times compounded per year, and t is the number of years.
- Exponential functions: A function of the form $y=a^{x}$ where $a>0$ and $a \neq 1$.
- Logarithmic functions: A function of the form $y=\log _{b} x$ with $b \neq 1$ and b and x both positive. A logarithmic function is the inverse of an exponential function. The inverse of $y=b^{x}$ is $y=\log _{b} x$.
- Logarithm: The logarithm base b of a number $x, \log _{b} x$, is the exponent to which b must be raised to equal x.
- Natural exponential: Exponential expressions or functions with a base of e; i.e., $y=e^{x}$.
- Natural logarithm: A logarithm with a base of $e . \ln b$ is the exponent, a, such that $e^{a}=b$. The natural logarithm of x is written $\ln x$ and represents loge e^{x}. For example, $\ln 8=2.0794415 \ldots$ because $e^{2.0794415 \ldots}=8$.

