1. Convert the following angle to radians in exact form (use rin your answer).

2. List the quadrant each angle is in.

3. Convert the following angle to degrees.

Write an equation of the specified function with each

 amplitude, period, phase shift, and vertical shift.5. sine function: amplitude $=15$, period $=4 \pi$, phase shift $=\frac{\pi}{2}$, vertical shift $=-10$
6. cosine function: amplitude $=\frac{2}{3}$, period $=\frac{\pi}{3}$, phase shift $=-\frac{\pi}{3}$, vertical shift $=5$
7. sine function: amplitude $=6$, period $=\pi$, phase shift $=0$, vertical shift $=-\frac{3}{2}$

Write an equation for the tangent function where:

$$
\text { period: } \frac{\pi}{3} \quad \text { phase shift: } \frac{\pi}{2} \quad \text { vertical shift of }-4
$$

Write an equation for the cosecant function where:
period: π phase shift: 2π
6. cosine function: amplitude $=\frac{2}{3}$, period $=\frac{\pi}{3}$, phase shift $=-\frac{\pi}{3}$, vertical shift $=5$

$Y=$	Amplitude	Trig Function	Omega, ω	X or θ	Ф	Vertical Shift
	(Distance from Midline)	sin or cos	$\omega=\frac{2 \pi}{P d}$	(VARIABLE)	$\Phi=-(\mathrm{PS})(\omega)$	(MIDLINE)

6. osinefunction: amplitude $=\frac{2}{3}$, period $-\frac{\pi}{3}$, phase shift $=-\frac{\pi}{3}$, vertical shift $=5$

5. sine function: amplitude $=15$, period $=4 \pi$, phase shift $=\frac{\pi}{2}$, vertical shift $=-10$
囷

	Amplitude	Trig Function	Omega, ω	X or Θ	Φ	Vertical Shift
$\mathrm{Y}=$						
	(Distance from Midline)	sin or cos	$\omega=\frac{2 \pi}{P d}$	(VARIABLE)	$\Phi=-(\mathrm{PS})(\omega)$	(MIDLINE)

Ex. 1

Kiki and Mikey are riding on a ferris wheel at a local carnival. The circular ferris wheel has a radius of 50 feet and is located 60 feet from the ground level. The ferris wheel makes a full rotation every 20 minutes. As a function relating the height of Kiki and Mikey on the ferris wheel to the time they ride (in minutes), find the following:
a) the amplitude of the seat.
b) the period of the seat.
c) the equilibrium of the ride.
d) an equation modeling the data presented.

$Y=$	Amplitude	Trig Function	Omega, ω	X or Θ	Ф	Vertical Shift
	(Distance from Midline)	sin or cos	$\omega=\frac{2 \pi}{P d}$	(VARIABLE)	$\Phi=-(\mathrm{PS})(\omega)$	(MIDLINE)

Ex. 1

Kiki and Mikey are riding on a ferris wheel at a local carnival. The circular ferris wheel has a radius of 50 feet and is located 60 feet from the ground level. The ferris wheel makes a full rotation every 20 minutes. As a function relating the height of Kiki and Mikey on the ferris wheel to the time they ride (in minutes), find the following:
a) the amplitude of the seat.
b) the period of the seat. 20 min
c) the equilibrium of the ride.
d) an equation modeling the data presented. 20 min .

$p d=20 \mathrm{~min}$

$$
\begin{aligned}
& w=\frac{2 \pi}{20}=\frac{\pi}{10} \\
& y=-50 \cos \left(\frac{\pi}{10} \theta\right)
\end{aligned}
$$

Ex. 1

Kiki and Mikey are riding on a ferris wheel at a local carnival. The circular ferris wheel has a radius of 50 feet and is located 60 feet from the ground level. The ferris wheel makes a full rotation every 20 minutes. As a function relating the height of Kiki and Mikey on the ferris wheel to the time they ride (in minutes), find the following:
a) the amplitude of the seat. 50 ft .
b) the period of the seat 20 min .
c) the equilibrium of the ride. midline 60 ft .
d) an equation modeling the data presented.

Example 2:

An evil litterer tosses a half-full (or half-empty) bottle of water into the sea. As the water moves the bottle bobs up and down. The distance between its highest and lowest point is 5 cm . It moves from the highest to the lowest point in 3 seconds and then back to the highest point 3 seconds later and so on.
Write a cos function that models the movement of the littered bottle in relationship to the equilibrium point.

目

	Amplitude	Trig Function	Omega, ω	X or Θ	Φ	Vertical Shift
$\mathrm{Y}=$						
	(Distance from Midline)	\sin or \cos	$\omega=\frac{2 \pi}{P d}$	(VARIABLE)	$\Phi=-(\mathrm{PS})(\omega)$	(MIDLINE)

Example 2:
An evil litterer tosses a half-full (or half-empty) bottle of water into the sea. As the water moves the bottle bobs up and down. The distance between its highest and lowest point is 5 cm . It moves from the highest to the lowest point in 3 seconds and then back to the highest point 3 seconds later and so on.
Write cos function that models the movement of the littered bottle in relationship to the equilibrium point.
Amp: 2.5
period: 6

$$
\omega=\frac{2 \pi}{6}
$$

$$
y=2.5 \cos \left(\frac{\pi}{3} \theta\right)
$$

$$
\omega=\pi / 3
$$

Example 3: HW: p. 391 (7-12)

Write a sine function which models the oscillation of tides in KEY WEST, Florida if the equilibrium point is 7.8 feet, the amplitude is 5.5 feet, the phase shift is -2.0 hours, and the period is 12.4 hours. According to your model, find the average position of the tides after 7 hours.

