Convert the following angle to radians in exact form (use nin your answer).

320° =

2. Convert the following angle to degrees.

 $\frac{7\pi}{8}$ radians =

3. List the quadrant each angle is in.

 $\frac{17\pi}{3}$

-842° =

Write an equation of the specified function with each amplitude, period, phase shift, and vertical shift.

5. sine function: amplitude = 15, period = 4π , phase shift = $\frac{\pi}{2}$, vertical shift = -10

6. cosine function: amplitude = $\frac{2}{3}$, period = $\frac{\pi}{3}$, phase shift = $-\frac{\pi}{3}$, vertical shift = 5

7. sine function: amplitude = 6, period = π , phase shift = 0, vertical shift = $-\frac{3}{2}$

Write an equation for the tangent function where:

period:
$$\frac{\pi}{3}$$
 phase shift: $\frac{\pi}{2}$ vertical shift of -4

Write an equation for the cosecant function where:

period: π phase shift: 2π

6. cosine function: amplitude = $\frac{2}{3}$, period = $\frac{\pi}{3}$, phase shift = $-\frac{\pi}{3}$, vertical shift = 5

, , ,

+							
		Amplitude	Trig Function	Omega, ω	X or Θ	Φ	Vertical Shift
	Y=						
		(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd}$	(VARIABLE)	Φ= -(PS)(ω)	(MIDLINE)

6. cosine function: amplitude = $\frac{2}{3}$, period $\frac{\pi}{3}$, whase shift = $\frac{\pi}{3}$, vertical shift = $\frac{\pi}{3}$

	Amplitude	Trig Function	Omega, ω	X or Θ	Ф	Vertical Shift
Υ=	2/3	C05	6	6	+2 _{T1}	+
	(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd}$	(VARIABLE)	Φ= -(PS)(ω)	(MIDLINE)

$$W = \frac{2\pi}{\frac{\pi}{3}} \qquad \Phi = -(-\frac{\pi}{3})(6)$$

$$2\pi \cdot \frac{3}{\pi} = 6\pi \cdot \frac{6}{3} \cdot \frac{6\pi}{3} = 2\pi$$

$$Y = \frac{2}{3}\cos(6G + 2\pi) + 5$$

5. sine function: amplitude = 15, period = 4π , phase shift = $\frac{\pi}{2}$, vertical shift = -10

+‡+	, .	, ,					
		Amplitude	Trig Function	Omega, ω	X or Θ	Φ	Vertical Shift
	Υ=						
		(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd}$	(VARIABLE)	Φ= -(PS)(ω)	(MIDLINE)

5. sine function: amplitude = 15, period = 4π , phase shift = $\frac{\pi}{2}$, vertical shift = -10Amplitude | Trig Function | Omega, ω | X or Θ | Φ | Vertical Shift

Y= | Si \(\sigma \) | $\frac{2}{2}$ | $\frac{2\pi}{Pd}$ | (VARIABLE) | Φ = -(PS)(ω) | (MIDLINE)

| W : $\frac{2\pi}{4\pi}$ | Φ = - ($\frac{\pi}{2}$) | $\frac{\pi}{2}$ |

5. (ine function: amplitude = 15.) period $= 4\pi$, phase shift $= \frac{\pi}{2}$, vertical shift = -10Amplitude Trig Function Omega, ω X or Θ Vertical Shift 12 -10 Υ= $\frac{2\pi}{Pd}$ (VARIABLE) $\Phi = -(PS)(\omega)$ (Distance from sin or cos (MIDLINE) Midline)

y=15 sin (= 0 - 74)-10 = 2

Ex. 1

Kiki and Mikey are riding on a ferris wheel at a local carnival. The circular ferris wheel has a radius of 50 feet and is located 60 feet from the ground level. The ferris wheel makes a full rotation every 20 minutes. As a function relating the height of Kiki and Mikey on the ferris wheel to the time they ride (in minutes), find the following:

- a) the amplitude of the seat.
- b) the period of the seat.
- c) the equilibrium of the ride.
- d) an equation modeling the data presented.

+	, .						
		Amplitude	Trig Function	Omega, ω	X or Θ	Φ	Vertical Shift
	Υ=						
		(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd}$	(VARIABLE)	Φ= -(PS)(ω)	(MIDLINE)

Ex. 1

Kiki and Mikey are riding on a ferris wheel at a local carnival. The circular ferris wheel has a radius of 50 feet and is located 60 feet from the ground level. The ferris wheel makes a full rotation every 20 minutes. As a function relating the height of Kiki and Mikey on the ferris wheel to the time they ride (in minutes), find the following:

- a) the amplitude of the seat. 50
- b) the period of the seat. 20 min
- c) the equilibrium of the ride.
- d) an equation modeling the data presented.

	Amplitude	Trig Function	Omega, ω	X or Θ		Vertical Shift
Υ=	50	-605	F19	Θ	$\langle \rangle$	60
	(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd}$	(VARIABLE)	Ф = -(PS)(-)	(MIDLINE)

$$y = -50 \cos\left(\frac{\pi}{10} \Theta\right)$$

Ex. 1

Kiki and Mikey are riding on a ferris wheel at a local carnival. The circular ferris wheel has a <u>radius of 50 feet</u> and is located 60 feet from the ground level. The ferris wheel makes a full rotation every 20 minutes. As a function relating the height of Kiki and Mikey on the ferris wheel to the time they ride (in minutes), find the following:

- a) the amplitude of the seat. 50 ff.
- b) the period of the seat 20 min.
- c) the equilibrium of the ride. midline 60 ft.
- d) an equation modeling the data presented.

Example 2:

An evil litterer tosses a half-full (or half-empty) bottle of water into the sea. As the water moves the bottle bobs up and down. The distance between its highest and lowest point is 5 cm. It moves from the highest to the lowest point in 3 seconds and then back to the highest point 3 seconds later and so on.

Write a cos function that models the movement of the littered bottle in relationship to the equilibrium point.

+	, ,	, ,					
		Amplitude	Trig Function	Omega, ω	X or Θ	Φ	Vertical Shift
	Υ=						
		(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd}$	(VARIABLE)	Φ= -(PS)(ω)	(MIDLINE)

Example 2:

An evil litterer tosses a half-full (or half-empty) bottle of water into the sea. As the water moves the bottle bobs up and down. The distance between its highest and lowest point is 5 cm. It moves from the highest to the lowest point in 3 seconds and then back to the highest point 3 seconds later and so on.

Write a cos function that models the movement of the littered bottle in relationship to the equilibrium point.

	Amplitude	Trig Function	Omega, ω	X or Θ		Vertical Shift
Υ=	2.5	CoS	Ti/3	(7	
	(Distance from Midline)	sin or cos	$\omega = \frac{2\pi}{Pd} \frac{2\pi}{6}$	(VARIABLE)	05-Leg/70)	(MOTIME)
			کی: کیا			
			₩: 1	i.		
() -	7 5	/π \		/3		
9 - 4	2.5 005	(\(\frac{2}{3}\) \(\text{\tin}\text{\tin}\text{\texi}\text{\text{\text{\ti}\text{\text{\texitt{\text{\texi}\ti}\\\ \ti}\tittt{\text{\text{\texi}\tittt{\texititt{\text{\texic}\text{\text{\text{\tet				

Example 3: HW: p. 391 (7-12)

Write a sine function which models the oscillation of tides in KEY WEST, Florida if the equilibrium point is 7.8 feet, the amplitude is 5.5 feet, the phase shift is -2.0 hours, and the period is 12.4 hours. According to your model, find the average position of the tides after 7 hours.