\qquad
\qquad

1. Write the equation of the function given the following information

a. Write the equation for the sine function with amplitude of 3 , a vertical shift down 6 , a period of 8 and no phase shift.
b. Write the equation for the cosine function with amplitude of 1 , a vertical reflection, a period of 4π, no vertical shift and phase shift of to the left of π.

2. Analyze the follow equation to identify the given information

$$
y=-2 \sin (1 / 2 \theta+\pi)-3
$$

The period = \qquad
The midline equation $=$ \qquad
The phase shift = \qquad

The highest y -value $=$ \qquad
The lowest y -value $=$ \qquad

3. Applications

a. Given a Ferris wheel that is centered 100 feet above the ground with a radius of 90 feet. This Ferris wheel takes 8 minutes to complete a full rotation. If you enter the Ferris wheel on the top, write the equation that best models this function as height (feet) vs. time (minutes). ** Hint, draw this function so that you can best identify if it is the sine or cosine function.

Answer = \qquad

How long in minutes would it take you to get from the top of the Ferris wheel to the bottom? \qquad

What is this height at the bottom of the Ferris wheel? \qquad
b. Given a Ferris wheel that is centered 10 feet above ground level with a radius of 50 feet (meaning part of the Ferris wheel goes below ground - you can assume that the amusement park constructed a
\qquad Pd. \qquad Quiz: Unit Circle Applications
slit-like hole in the ground to allow the Ferris wheel to go below ground - creating a more exciting ride). You enter the Ferris wheel at ground level (the equilibrium) as the wheel is on its way down. It takes 4π minutes to return you to where you started. Write the equation that best models this information. ** Hint, again, draw this function as height (meters) vs. time (minutes) to help you identify if it is a sine or cosine function.

Function: \qquad
c. Given the function $y=20 \cos (\pi m / 6)+20$ that represents the average rain fall in inches each month (with ' m ' representing 'which month' ($m=1$ is January, $m=2$ is February and so on...))

What is the maximum rainfall in any given month?

What month does this occur? Month = \qquad

What is the minimum rainfall in any given month?

Maximum rainfall $=$ \qquad

What month does this occur? Month = \qquad
Minimum rainfall $=$ \qquad

