Hey, Let's have a great week !!! 🌞

This week:

<table>
<thead>
<tr>
<th>Day</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Worksheet for Classwork & Homework</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Quiz, then a Homework worksheet to pre-view your knowledge</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Piecewise Function Notes & Worksheet for classwork / homework</td>
</tr>
<tr>
<td>Thursday</td>
<td>Piecewise Functions Worksheet Review & Practice</td>
</tr>
<tr>
<td>Friday</td>
<td>Activity Day with Take Home Quiz</td>
</tr>
</tbody>
</table>
Linear Functions:

2 minutes -- Share what you know with someone near you

$y = mx + b$ slope-intercept form

Slope = \frac{\text{Rise}}{\text{Run}}

Straight line
Vertical line test

$y - y_1 = m(x - x_1)$ point-slope formula

$Ax + By = C$ standard form

ex: $3x + 2y = 7$ use x-int. and y-int.
State the domain and range of each relation. Then state whether the relation is a function.

Domain: x-values **Range:** y-values

A Function: can repeat y-values

Can Not repeat x-values

Vertical line test
* only touches graph at one intersection pt.

Example:

1. **Equation** \(y = (x+2) - 3 \)
 Yes

2. **Graph**

3. **Table**

 \((3,2); (5,1); (3,7) \)

 Not a Function

 \((5,1); (6,2); (3,2); (7,1) \)

 Repeat y-values

 Make a function
Find the domain and range of each graph and then determine if it is a function.
Graph each equation.

\[y = \frac{3}{2}x + \frac{5}{3} \]

\[2x - 3y = 5 \]

1. **Slope-Intercept Form**

 \[-3y = -2x + 5 \]

 \[y = \frac{2}{3}x - \frac{5}{3} \]

EASY WAY

\[2x - 3y = 5 \]

- \[x = \frac{5}{2} \]

 \[(\frac{5}{2}, 0) \]

- \[y = -\frac{5}{3} \]

 \[(0, -\frac{5}{3}) \]
Write an equation in standard form for a line that passes through the points.

\[y = -\frac{1}{2}x + b \]

\[(3, 2) \]

\[x = 3 \]
\[y = 2 \]

\[2 = -\frac{1}{2}(3) + b \]

\[2 = -\frac{3}{2} + b \]

\[+\frac{3}{2} \]

\[\frac{2}{2} + \frac{3}{2} = b \]

\[\frac{5}{2} = b \]

\[\frac{7}{2} = b \]

\[y = \frac{-1}{2}x + \frac{7}{2} \]
parallel \Rightarrow \text{slope same}

perpendicular \Rightarrow \text{flip & change sign}

\text{"opposite reciprocal"}

\text{reciprocal}
Determine if the two lines are parallel, perpendicular, coinciding or none of these.